Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunology ; 165(2): 219-233, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775598

RESUMEN

Tuberculosis (TB) and malaria remain serious threats to global health. Bacillus Calmette-Guerin (BCG), the only licensed vaccine against TB protects against severe disseminated forms of TB in infants but shows poor efficacy against pulmonary TB in adults. Co-infections have been reported as one of the factors implicated in vaccine inefficacy. Given the geographical overlap of malaria and TB in areas where BCG vaccination is routinely administered, we hypothesized that virulence-dependent co-infection with Plasmodium species could alter the BCG-specific immune responses thus resulting in failure to protect against Mycobacterium tuberculosis. We compared virulent Plasmodium berghei and non-virulent Plasmodium chabaudi, their effects on B cells, effector and memory T cells, and the outcome on BCG-induced efficacy against M. tuberculosis infection. We demonstrate that malaria co-infection modulates both B- and T-cell immune responses but does not significantly alter the ability of the BCG vaccine to inhibit the growth of M. tuberculosis irrespective of parasite virulence. This malaria-driven immune regulation may have serious consequences in the early clinical trials of novel vaccines, which rely on vaccine-specific T-cell responses to screen novel vaccines for progression to the more costly vaccine efficacy trials.


Asunto(s)
Vacuna BCG/inmunología , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunogenicidad Vacunal , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Tuberculosis/prevención & control , Animales , Apoptosis , Recuento de Linfocito CD4 , Modelos Animales de Enfermedad , Femenino , Humanos , Malaria/inmunología , Malaria/parasitología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Ratones , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vacunas contra la Tuberculosis/inmunología , Vacunación
2.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29618644

RESUMEN

Understanding the mechanisms used by HIV-1 to evade antibody neutralization may contribute to the design of a high-coverage vaccine. The tier 3 virus 253-11 is poorly neutralized by subtype-matched and subtype C sera, even compared to other tier 3 viruses, and is also recognized poorly by V3/glycan-targeting monoclonal antibodies (MAbs). We found that sequence polymorphisms in the V3 loop and N-linked glycosylation sites contribute only minimally to the high neutralization resistance of 253-11. Interestingly, the 253-11 membrane-proximal external region (MPER) is rarely recognized by sera in the context of the wild-type virus but is commonly recognized in the context of an HIV-2 chimera, suggesting steric or kinetic hindrance of binding to MPER in the native envelope (Env). Mutations in the 253-11 MPER, which were previously reported to increase the lifetime of the prefusion Env conformation, affected the resistance of 253-11 to antibodies targeting various epitopes on HIV-1 Env, presumably destabilizing its otherwise stable, closed trimer structure. To gain insight into the structure of 253-11, we constructed and crystallized a recombinant 253-11 SOSIP trimer. The resulting structure revealed that the heptad repeat helices in gp41 are drawn in close proximity to the trimer axis and that gp120 protomers also showed a relatively compact disposition around the trimer axis. These observations give substantial insight into the molecular features of an envelope spike from a tier 3 virus and into possible mechanisms that may contribute to its unusually high neutralization resistance.IMPORTANCE HIV-1 isolates that are highly resistant to broadly neutralizing antibodies could limit the efficacy of an antibody-based vaccine. We studied 253-11, which is highly resistant to commonly elicited neutralizing antibodies. To further understand its resistance, we made mutations that are known to delay fusion and thus increase the time that the virus spends in the open conformation following CD4 binding. Interestingly, we found that these mutations affect the 253-11 envelope (Env) spike before CD4 binding, presumably by destabilizing the trimer structure. To gain further information about the structure of the 253-11 Env trimer, we generated a recombinant 253-11 SOSIP trimer. The crystal structure of the SOSIP trimer revealed that the gp41 helices and the gp120 protomers were drawn in toward the center of the molecule compared to most solved HIV-1 Env structures. These observations provide insight into the distinct molecular features of a tier 3 envelope spike.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Secuencia de Aminoácidos , Epítopos/inmunología , Proteína gp120 de Envoltorio del VIH/química , Infecciones por VIH/virología , VIH-1/química , Humanos , Polimorfismo Genético , Polisacáridos/inmunología
3.
Clin Chem Lab Med ; 47(9): 1147-58, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19728857

RESUMEN

BACKGROUND: Antibodies in adults living in malaria endemic areas that target specific parasite antigens are implicated in protective immunity to infection and disease. This study aimed to identify, isolate and characterise targets of protective immunity in malaria. A Plasmodium falciparum antigen termed UB05 (Genbank Accession Number DQ235690: PlasmoDB PF10_ 0372) that had been isolated by immunoscreening with semi-immune sera was studied. METHODS: Polymerase chain reaction, sequencing and bioinformatics were used to analyse the UB05 gene. A specific mouse anti-UB05 antibody was used in parasite reinvasion growth/inhibition assays and in immunoflourescence to localise the antigen. In a cross-sectional study, enzyme linked immunosorbent assay was used to study immunoglobulin G (IgG) responses to the antigen. RESULTS: The gene revealed significant homologies with gene sequences from Plasmodia and other apicomplexan parasites and had two alleles in the wild P. falciparum isolates. The antigen is expressed by schizonts and segmented merozoites. Mouse antibodies against it marginally inhibit in vitro invasion of erythrocytes by P. falciparum. The IgG responses to UB05 were found to be significantly lower (p<0.05) in the sera of children (2-5 years) compared with adults (>18 years), with or without parasitaemia. However, parasitaemia correlated inversely (r=0.7- 0.75) with serum anti-UB05 IgG concentrations. Furthermore, anti-UB05 IgG concentrations were lower in the sera of febrile patients (body temperature >37.5 degrees C) than their non-febrile counterparts regardless of parasitaemia status. CONCLUSIONS: These results are compatible with a role for UB05 in the development of immunity and as a marker of protective immunity to malaria.


Asunto(s)
Antígenos de Protozoos/inmunología , Plasmodium falciparum/inmunología , Adulto , Animales , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/metabolismo , Secuencia de Bases , Camerún , Estudios Transversales , Brotes de Enfermedades , Ensayo de Inmunoadsorción Enzimática , Glicina , Humanos , Malaria/epidemiología , Ratones , Datos de Secuencia Molecular , Filogenia , Plasmodium falciparum/clasificación , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...